Voltage-Sensing Arginines in a Potassium Channel Permeate and Occlude Cation-Selective Pores

نویسندگان

  • Francesco Tombola
  • Medha M. Pathak
  • Ehud Y. Isacoff
چکیده

Voltage-gated ion channels sense voltage by shuttling arginine residues located in the S4 segment across the membrane electric field. The molecular pathway for this arginine permeation is not understood, nor is the filtering mechanism that permits passage of charged arginines but excludes solution ions. We find that substituting the first S4 arginine with smaller amino acids opens a high-conductance pathway for solution cations in the Shaker K(+) channel at rest. The cationic current does not flow through the central K(+) pore and is influenced by mutation of a conserved residue in S2, suggesting that it flows through a protein pathway within the voltage-sensing domain. The current can be carried by guanidinium ions, suggesting that this is the pathway for transmembrane arginine permeation. We propose that when S4 moves it ratchets between conformations in which one arginine after another occupies and occludes to ions the narrowest part of this pathway.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthetic multifunctional pores: deletion and inversion of anion/cation selectivity using pM and pH.

We report the characterization of multifunctional rigid-rod beta-barrel ion channels with either internal aspartates or arginine-histidine dyads by planar bilayer conductance experiments. Barrels with internal aspartates form cation selective, large, unstable and ohmic barrel-stave (rather than toroidal) pores; addition of magnesium cations nearly deletes cation selectivity and increases single...

متن کامل

An evidence for a potassium channel in endoplasmic reticulum based on single channel recording in bilayer lipid membrane

Introduction Numerous studies have demonstrated the presence of potassium selective channels in membranes internal organelles. These channels are essential to a large variety of cellular processes including intracellular 2+ a signaling, protein recycling, charge neutralization and cell protection. In contrast to the sarcoplasmic reticulum + here potassium channels have been clearly ...

متن کامل

The isolated voltage sensing domain of the Shaker potassium channel forms a voltage-gated cation channel

Domains in macromolecular complexes are often considered structurally and functionally conserved while energetically coupled to each other. In the modular voltage-gated ion channels the central ion-conducting pore is surrounded by four voltage sensing domains (VSDs). Here, the energetic coupling is mediated by interactions between the S4-S5 linker, covalently linking the domains, and the proxim...

متن کامل

Do Hyperpolarization-induced Proton Currents Contribute to the Pathogenesis of Hypokalemic Periodic Paralysis, a Voltage Sensor Channelopathy?

An increasing number of human diseases have been found to result from mutations in ion channels, including voltage-gated cation channels. Though the mutations are known, the pathophysiological mechanisms underlying many of these channelopathies remain unclear. In this issue of the Journal, Struyk and Cannon (see p. 11) provide evidence for a novel mechanism, proton movement catalyzed by the vol...

متن کامل

Functionality of the voltage-gated proton channel truncated in S4.

The voltage sensor domain (VSD) is the key module for voltage sensing in voltage-gated ion channels and voltage-sensing phosphatases. Structurally, both the VSD and the recently discovered voltage-gated proton channels (Hv channels) voltage sensor only protein (VSOP) and Hv1 contain four transmembrane segments. The fourth transmembrane segment (S4) of Hv channels contains three periodically ali...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuron

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2005